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Abstract

Although rodents are well-known reservoirs and vectors for a number of zoonoses, the functional role that
peridomestic rodents serve in the amplification and transmission of foodborne pathogens is likely underap-
preciated. Clear links have been identified between commensal rodents and outbreaks of foodborne pathogens
throughout Europe and Asia; however, comparatively little research has been devoted to studying this rela-
tionship in the United States. In particular, regional studies focused on specific rodent species and their
foodborne pathogen reservoir status across the diverse agricultural landscapes of the United States are lacking.
We posit that both native and invasive species of rodents associated with food-production pipelines are likely
sources of seasonal outbreaks of foodborne pathogens throughout the United States. In this study, we review the
evidence that identifies peridomestic rodents as reservoirs for foodborne pathogens, and we call for novel
research focused on the metagenomic communities residing at the rodent-agriculture interface. Such data will
likely result in the identification of new reservoirs for foodborne pathogens and species-specific demographic
traits that might underlie seasonal enteric disease outbreaks. Moreover, we anticipate that a One Health
metagenomic research approach will result in the discovery of new strains of zoonotic pathogens circulating in
peridomestic rodents. Data resulting from such research efforts would directly inform and improve upon

biosecurity efforts, ultimately serving to protect our food supply.
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Introduction

F OODBORNE ILLNESSES ARE a major threat to human health,
and it is estimated that foodborne pathogens sicken at
least 48 million in the United States annually, causing up-
wards of $70 billion USD in health-related costs (Scallan
et al. 2011, Scharff 2012, Hoffman et al. 2015, Hoffmann and
Scallan 2017). Moreover, ~64% of hospitalization and
deaths associated with foodborne pathogens in the United
States are caused by zoonotic bacteria, including non-
typhoidal Salmonella enterica, Campylobacter spp., Clos-
tridium spp., Shiga-toxin producing Escherichia coli (STEC),
and Listeria monocytogenes (Scallan et al. 2011).

The direct environmental point source for many of the
zoonotic enteric pathogens that enter our food supply is
typically difficult to determine; however, wildlife distributed
throughout local environments associated with a given out-
break are frequently implicated in spreading zoonosis (Atwill
et al. 2012, Himsworth et al. 2013, Greig et al. 2015, Sellers

et al. 2018, Ayyal et al. 2019). When considering putative
reservoirs and vectors for the major zoonotic foodborne
pathogens that underlie human disease, a critically important
and uniting feature is that each is associated with perido-
mestic rodent hosts (Backhans et al. 2011, Himsworth et al.
2015, Ayyal et al. 2019, Bondo et al. 2019, Tan et al. 2019)
(Table 1).

Rodents are the most specious group of mammals in the
world with over 2000 species recognized, and they are well
known for harboring a plethora of zoonotic pathogens of
human health concern (e.g., Hantaviruses, Lassa fever virus,
Giardia, Borrelia, and so on) (Han et al. 2015). Commensal
and peridomestic rodent species are of special interest to the
global One Health initiative, as regionally invasive and native
species of mice and rats have benefitted from human activi-
ties, especially agricultural systems. Commensal rodents are
a common component of the agricultural landscape, and these
animals are known to transmit foodborne pathogens to live-
stock, poultry, and raw produce by contaminating the overall
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TABLE 1. ZoONOTIC FOODBORNE PATHOGENS ASSOCIATED WITH RODENT RESERVOIRS

Foodborne pathogens Known rodent reservoirs

References

Apodemus sylvaticus (Wood mouse), Microtus agrestis
(Field vole), Microtus longicaudus (Longtail vole),
Microtus richardsoni (Water vole), Mus musculus
(House mouse), Myodes glareolus (Bank vole),
Peromyscus maniculatus (Deer mouse), Rattus
norvegicus (Norway rat), Zapu princeps (Western
jumping mouse)

A. sylvaticus, Microtus arvalis (Common vole),
Micromys minutus (Eurasian harvest mouse),

M. musculus, R. norvegicus, Rattus rattus (Black rat)

Akodon cursor (Cursor grass mouse), Allactaga elater
(Small five-toed jerboa), Apodemus agrarius (Striped
field mouse), Apodemus flavicollis (Yellow-necked
mouse), Aeschynanthus speciosus, Arvicola terrestris
(European water vole), Callospermophilus lateralis
(Golden-mantled ground squirrel), Clethrionomys
gapperi (Southern Red-backed voles), Cricetulus
migratorius (Gray hamster), Dipodomys heermanni
(Heermann’s kangaroo rat), Dipodomys microps
(Chisel-toothed kangaroo rat), Dipodomys ordii (Ord’s
kangaroo rat), Eliomys quercinus (Garden dormouse),
Eutamias amoenus (Yellow pine chipmunk), Eutamias
sibiricus (Siberian Chipmunk), Glaucomys sabrinus
(Northern flying squirrel), Lemniscomys barbarus
(Zebra mouse), Meriones shawi (Shaw’s jird),

M. arvalis, Microtus californicus (Meadow mouse),
Microtus fortis (Reed vole), M. musculus, Myocastor
coypus (Nutria), M. glareolus, Myodes rutilus
(Northern red-backed vole), Napaeozapus insignis
(Woodland jumping mice), Neotoma cinerea
(Bushy-tailed woodrat or packrat), Neotoma fuscipes
(Dusky-footed woodrat), Neotamias minimus (Least
chipmunk), Neotamias sonomae (Sonoma chipmunk),
Oligoryzomys nigripes (Black-footed pygmy rice rat),

Campylobacter spp.

Clostridium spp.

Coxiella burnetii

Ondatra zibethicus (Muskrat), Onychomys leucogaster

(Northern grasshopper mouse), Otospermophilus
beecheyi (Beechy ground squirrel), Oxymycterus
dasytrichus (Atlantic Forest hocicudo), Peromyscus
boylii (Brush mouse), P. maniculatus, Peromyscus
truei (Pinyon mouse), Proechimys cayenne (Cayenne
spiny rat), Physalaemus cuvieri (Cuvier’s spiny rat),
R. norvegicus, R. rattus, Reithrodontomys megalotis
(Harvest mouse), Rhombomys opimus (Great gerbil),
Sciurus griseus (Western gray squirrel), Spermophilus
relictus (Relict ground squirrel), Tamiasciurus
hudsonicus (North American red squirrels)

Cryptosporidium spp.  A. agrarius, Apodemus chejuensis (Jeju striped field
mouse), M. musculus, Peromyscus californicus
(California mouse), P. maniculatus, Rattus
argentiventer (Rice-field rat), R. norvegicus, R. exulans
(Pacific rat), R. rattus, Rattus tanezumi (Asian house
rat), Rattus tiomanicus (Malayan field rat)

Escherichia coli (STEC A. agrarius, A. flavicollis, A. sylvaticus, Arvicola

and multiple AMR amphibius (European water vole), M. minutus,
strains) M. agrestis, M. arvalis, Microtus pennsylvanicus

(Meadow vole), Monodus subterraneus (European
pine vole), M. musculus, M. glareolus, P. californicus,
P. maniculatus, R. norvegicus, Tamius striatus
(Eastern chipmunk)
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Fernie and Park (1977), Rosef et al.

(1983), Pacha et al. (1987),
Meerburg et al. (2006), Viswanathan
et al. (2017)

Burt et al. (2012), Jardine et al. (2013),

Himsworth et al. (2014), Krijger
et al. (2019)

Blanc et al. (1947), Perez Gallordo

et al. (1952), Zhmaeva et al. (1955),
Blanc and Bruneau (1956), Syriacek
and Raska (1956), Orsborn et al.
(1959), Stoenner et al. (1959),
Yevdoshenko and Proreshnaya
(1961), Burgdorfer et al. (1963),
Enright et al. (1969), Enright et al.
(1971), Riemann et al. (1979),
Ejercito et al. (1993), Gardon et al.
(2001), Meerburg and Reusken
(2011), Reusken et al. (2011),
Thompson et al. (2012), Liu et al.
(2013), Foronda et al. (2015),
Bolanos-Rivero et al. (2017),
Rozental et al. (2017)

Kilonzo et al. (2013), Song et al.

(2015), Saki et al. (2016), Tan et al.
(2019)

Cizek et al. (1999) Nielsen et al.

(2004), Ulrich et al. (2008),
Guenther et al. (2010), Allen et al.
(2011), Allen et al. (2013), Kilonzo
et al. (2013)

(continued)
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TABLE 1. (CONTINUED)

Foodborne pathogens

Known rodent reservoirs

References

Francisella tularensis

Giardia spp.

Hepeatitis E virus

Leptospira spp.

Listeria monocytogenes

Norovirus (multiple
strains)
Salmonella spp.

Staphylococcus aureus

Toxoplasma gondii

Trichinella spp.

A. agrarius, A. flavicollis, A. peninsulae, A. sylvaticus, A.

amphibius, A. terrestris, Callithrix jacchus (Common
marmosets), Castor canadensis (American beaver),
Cricetus migratorius (European hamster), Cynomys
ludovicianus (Black-tailed prairie dog), E. sibiricus,

Meriones lybicus (Libyan jird), M. agrestis, M. arvalis,

M. pennsylvanicus, Microtus montebelli (Japanese

grass vole), M. musculus, M. glareolus, M. rufocanus

(Gray-sided vole), O. zibethicus, R. norvegicus,

R. rattus, Sciurus carolinensis (Eastern gray squirrel),

S. griseus, Sciurus niger (fox squirrel), Spermophilus

dauricus (Daurian ground squirrels), Tscherskia triton

(Greater Long-tailed Hamster), Urocitellus
richardsonii (Richardson’s ground squirrel)

A. agrarius, A. flavicollis, A. sylvaticus, Bandicota indica

(Greater bandicoot rat), Maxomys surifer (Red spiny
rat), M. agrestis, M. arvalis, M. glareolus,
P. californicus, P. maniculatus, R. argentiventer,
R. norvegicus, R. exulans, R. rattus, R. tanezumi,
R. tiomanicus

A. sylvaticus, Bandicota bengalensis (Lesser bandicoot
rat), M. musculus, P. maniculatus, Rattus exulans,
R. norvegicus, Rattus pyctoris (Turkestan rat),

R. rattus, R. tanezumi, Sigmodon hispidus (Cotton rat)

R. norvegicus, S. niger

A. agrarius, A. chevrieri (Chevrier’s field mouse),
A. peninsulae (Korean field mouse), Callosciurus
(Beautiful squirrels), Niviventer confucianus (Chinese
white-bellied rat), Rattus lossea, R. norvegicus,
R. rattus, T. triton

R. Norvegicus

A. sylvaticus, M. agrestis, M. musculus, M. glareolus,
P. californicus, P. maniculatus, R. norvegicus,
S. carolinensis

A. flavicollis, M. agrestis, M. musculus, M. glareolus,
R. norvegicus, R. rattus
A. sylvaticus, M. arvalis, Mastomys erythroleucus

(Guinea multimammate mouse), Mastomys natalensis

(Natal multimammate mouse), M. musculus
domesticus (Western European house mouse),
Peromyscus sp?, R. norvegicus, R. rattus

A. agrarius, A. flavicollis, A. sylvaticus, B. bengalensis,
M. natalensis, M. musculus, Meriones persicus
(Persian Jird), Peromyscus leucopus (White-footed
mouse), P. maniculatus, R. norvegicus, R. rattus
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Bell and Stewart (1975), Bruce (1978),
Magee et al. (1989), Gurycova et al.
(2001), Avashia et al. (2002),
Berrada et al. (2006), Friend (2006),
Zhang et al. (2006), Splettstoesser
et al. (2007), Kaysser et al. (2008),
Williams and Barker (2008),
Gyuranecz et al. (2010), Nelson
et al. (2014), Rossow et al. (2014),
Sharma et al. (2014)

Pacha et al. (1987), Kilonzo et al.
(2013), Masakul et al. (2016),
Helmy et al. (2018), Tan et al.
(2019)

Karetnyi et al. (1993), Kabrane-Lazizi
et al. (1999), Favorov et al. (2000),
Arankalle et al. (2001), He et al.
(2002), Hirano et al. (2003), Vitral
et al. (2005), Johne et al. (2010),
Purcell et al. (2011), Kanai et al.
(2012), Lack et al. (2012),
Depamede et al. (2013), De Sabato
et al. (2020)

Bharti et al. (2003), Dirsmith et al.
(2013), Allen et al. (2014)

Inoue et al. (1992), Lesley et al.
(2016), Wang et al. (2017), Cao
et al. (2019)

Wolf et al. (2013), Summa et al. (2018)

Shimi et al. (1979), Singh et al. (1980),
Henzler and Opitz (1992), Guard-
Petter et al. (1997), Pocock et al.
(2001), Hilton et al. (2002), Davies
and Breslin (2003), Garber et al.
(2003), Meerburg et al. (2006), Jijon
et al. (2007), Kilonzo et al. (2013)

Van de Giessen et al. (2009), Mrochen
et al. (2017), Lee et al. (2019)

Dubey et al. (1995), Weigel et al.
(1995), Kijlstra et al. (2008),
Meerburg et al. (2012), Ruffolo
et al. (2016), Khademvatan et al.
(2017), Brouat et al. (2018)

Martin et al. (1968), Sadighian et al.
(1973), Shaikenov and Boev (1983),
Loutfy et al. (1999), Dick and Pozio
(2001), Larrieu et al. (2004),
Stojcevic et al. (2004), Pozio (2005),
Kanai et al. (2007), Pozio et al.
(2009), Ribicich et al. (2010)

(continued)
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TABLE 1. (CONTINUED)

Foodborne pathogens

Known rodent reservoirs

References

Yersinia spp.

A. agrarius, A. argenteus (Geisha mice), A. flavicollis,
A. speciosus (Woods mice), Ashizomys andersoni
(Oriental voles), A. niigatae (Oriental voles),
Clethrionomys rufocanus bedfordiae (Large red-

Pokorna and Aldova (1977), Kaneko
and Hashimoto (1981), Shayegani
et al. (1986), linuma et al. (1992),
Backhans et al. (2011), Joutsen et al.

backed mice), C. rutilus (Redbacked mice), (2017)
Eothenomys kageus (Oriental voles), M. minutus,

M. agrestis, M. levis (Sibling vole), M. montebelli

(Japanese grass vole), M. musculus, M. glareolus,

R. norvegicus, R. rattus, Tamias sibiricus (Asiatic

chipmunks), T. striatus

AMR, antimicrobial resistance; STEC, Shiga-toxin producing E. coli.

farm environment (Rodriguez et al. 2006, Meerburg 2010,
Backhans and Fellstrom 2012, Kilonzo et al. 2013). This
transmission is largely due to the amplification of foodborne
pathogens through the daily deposition of urine and fecal
pellets into the production environment, and a clear example
of this rodent-based amplification is found with Salmonella
(Fig. 1).

Fifteen Salmonella Enteritidis cells can successfully infect
a mouse (Mus musculus), and the infection can be main-

n =15 Salmonella

v

n = 230,000 Salmonella
(1 mouse fecal pellet)

C ¢
n = 23 million Salmonella
(1 mouse in barn for 1 day)

FIG. 1. Salmonella amplification by a rodent host.
(A) Approximately 15 Salmonella bacteria are required to
establish infection within a rodent. (B) After colonization,
~230,000 Salmonella are shed in a single mouse fecal
pellet. (C) One rodent can produce 100 fecal pellets in 24 h.
Thus, at least 23 million Salmonella can be introduced into a
barn environment by a single rodent pest. This process
contributes to outbreaks of enteric disease due to contami-
nated food or water resources.

tained for over 10 months (Trampel et al. 2014). During
active shedding, one mouse fecal pellet can contain up to
230,000 Salmonella cells, and the rodent can output more
than 100 fecal pellets in a day (Fig. 1). Thus, a single rodent
within a barn or food-production facility can introduce up-
wards of 23 million Salmonella bacteria into production
pipelines within 24 h (Davies and Wray 1995, Trampel et al.
2014). In particular, the poultry industry is especially sus-
ceptible to rodent-driven Salmonella outbreaks as poultry
preferentially consume rodent fecal pellets (see Salmonella
section below), and as little as 100 Salmonella bacteria are
required to successfully infect young chicks (sustained do-
ses of 10° colony-forming units [CFUs] required for main-
taining infections [Van Immerseel et al. 2004]).

Despite a growing list of examples that document strong
links between rodents on farms and outbreaks of foodborne
pathogens in Europe and Asia (Berndtson et al. 1996, Burt
et al. 2012, Lapuz et al. 2012, Espinosa et al. 2018, Camba
et al. 2020), comparatively little research on the rodent-
agriculture interface has occurred in the United States
(Henzler and Opitz 1992, Kilonzo et al. 2013). Moreover,
studies investigating this interface frequently lack specific
knowledge of the rodent species involved and refer to rodents
simply as ““mice’” or “‘rats,” therefore preventing the iden-
tification of species-specific patterns with respect to reservoir
status, demographic trends, etc. (Hancock et al. 1998, Hiett
et al. 2002). For these reasons, the role of peridomestic ro-
dents as reservoirs or vectors of zoonotic foodborne patho-
gens in the United States is not well defined, and there is a
great need to fill this epidemiological knowledge gap.

We review select rodent species and bacterial foodborne
pathogens that are routinely linked to rodent reservoirs. Our
intent is to bring awareness to the rodent species diversity that
must be considered when examining environmental sources
of foodborne pathogens; these data can ultimately inform
public health policies and species-specific biosecurity mea-
sures in food production operations.

Primary Species of the Rodent-Agriculture Interface
Across the Midwestern United States

In this study, we summarize some of the rodent species that
are likely at the heart of the rodent-agriculture interface in the
Midwestern United States (i.e., lowa, Michigan, Minnesota,
Missouri, Nebraska, North Dakota, Ohio, South Dakota, and
Wisconsin), one of the most agriculturally productive regions
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of the world. Importantly, the species we highlight represent
a regional example and are not exhaustive; these are species
that are commonly observed on farms throughout the Mid-
west and they include both North American native species
and invasive species.

Native Species
White-footed mouse

The White-footed Mouse (Peromyscus leucopus) is a
relatively small rodent in the genus Peromyscus that has a
distribution extending from Canada to Mexico, including
the eastern and midwestern United States, as far west as
Arizona (Fig. 2) (Lackey et al. 1985). White-footed mice are
semiarboreal, but also occur in agricultural areas (Drick-
amer 1970, Cummings and Vessey 1994); and their diet
consists of seeds, green vegetation, insects, and arthropods
(Lackey et al. 1985, Wolff et al. 1985). Cummings and
Vessey (1994) reported that P. leucopus could be found in
nearly all areas trapped across the farmsteads of Ohio and
was second in abundance only to the invasive house mouse
(M. musculus; see below). White-footed mice are of special
concern to One Health because they have been positively
identified as vectors for not only hantavirus (Cummings and
Vessey 1994) but also for other pathogens causing Lyme
disease, human babesiosis, and human granulocytic ehrli-
chiosis (Stafford et al. 1999). When considering foodborne
zoonoses, multiple pathogens have been identified within
Peromyscus hosts (Table 1).

Deer mouse

A close relative to the White-footed Mouse is the Deer
Mouse (Peromyscus maniculatus) from the same genus,
Peromyscus. The Deer Mouse is a common rodent species
that is distributed throughout North America, including
Canada, nearly all the United States, and southward into
Mexico (American Society of Mammalogists and King
1968). Similar to the White-footed mouse, deer mice feed
on seeds, vegetation, and arthropods (Jameson 1952, Wolff
et al. 1985). Deer mice are well adapted to different envi-
ronments, including grasslands, prairies, and agricultural
lands (Beckwith 1954), and have been reported to prefer
indoor granaries when living in a farm setting, especially
during winter months (Bovet 1970). Peromyscus manicu-
latus is a known reservoir for many zoonotic pathogens,
including Sin Nombre Virus (Madhav et al. 2007), Cryp-
tosporidium and Giardia (Kilonzo et al. 2017), and Coxiella
burnetii and Pasteurella pestis (Yersinia pestis) (Orsborn
et al. 1959). This species is also associated with several
foodborne pathogens (Table 1).

Meadow vole

The Meadow Vole (Microtus pennsylvanicus) can be dis-
tinguished from Peromyscus species by a darker pelage and
shorter tail (Reich 1981). It has a large range compared to
other voles in the genus Microtus. The Meadow Vole occurs
throughout Canada, the north and eastern parts of the United
States, and extending southward into Mexico (Reich 1981).
This species has been known to frequent farm settings in the
Midwest and is associated with dense grassland habitats
(American Society of Mammalogists and Tamarin 1985).

JAHAN ET AL.

Meadow voles are mainly herbivores, although they have
been found to eat insects and scavenge on animal remains
(Zimmerman 1965, Reich 1981). Microtus pennsylvanicus
has been implicated as a reservoir for Borrelia burgdorferi
(causative agent of Lyme disease) (Markowski et al. 1998)
and Rickettsia responsible for Rocky Mountain Spotted fever
(Gould and Miesse 1954). Multiple species of voles (Mi-
crotus) have been implicated as reservoirs for Campylobacter
sp., E. coli, and Listeria sp. (Table 1).

Thirteen-lined ground squirrel

The Thirteen-lined Ground Squirrel (Ictidomys tride-
cemlineatus) is recognizable by its slender body and distinctly
alternating light-colored longitudinal stripes and rows of spots
(Lawlor 1982). The distribution for the thirteen-lined ground
squirrel extends from Canada to Texas, east of the Rocky
Mountains to the Great Lakes region (Streubel and Fitzgerald
1978). This species is considered carnivorous, mainly feeding
on grasshoppers, although seeds and other vegetation have
been found in their stomach contents (Fitzpatrick 1925,
Whitaker 1972). Thirteen-lined ground squirrels have adapted
well to farms and urban areas (Streubel and Fitzgerald 1978),
thus increasing the risk of zoonotic disease transfer. For in-
stance, Cloud-Hansen et al. (2007) reported multidrug resis-
tant bacteria from wild-caught thirteen-lined ground squirrels
(Morganella morganii and Stenotrophomonas maltophilia).
Furthermore, thirteen-lined ground squirrels have been im-
plicated as potential transmitters of avian influenza viruses
(Vandalen et al. 2009). Very little research has focused on the
putative pathogens that thirteen-lined ground squirrels carry
despite the species being a common resident on farms and in
urban areas throughout the Midwest.

Eastern chipmunk

The Eastern Chipmunk (7amias striatus) is heavier-set
than the thirteen-lined ground squirrel and has prominent
white dorsal stripes flanked by darker stripes and no spots
(as seen in the thirteen-lined ground squirrel). The Eastern
Chipmunk is distributed throughout eastern North America,
including Canada and southward to the Gulf states, but is
absent from the coastal plain (Snyder 1982). Eastern chip-
munks are omnivorous, and their diet includes seeds, nuts,
insects, fungi, frogs, snakes, birds, and small mammals (EI-
liott 1978, Snyder 1982). Tamias striatus has been associated
with West Nile Virus (Gomez et al. 2008) and was implicated
as an amplifier host for La Crosse Virus (Hanson et al. 1975).
Furthermore, isolates of E. coli have been found in chip-
munks (Maldonado et al. 2005). Other datasets showing
putative links to foodborne pathogens are lacking.

Eastern gray and fox squirrels

The Eastern Gray Squirrel (Sciurus carolinensis) is dis-
tributed throughout the eastern United States and northward
into Canada. Several introductions have occurred in the
western United States and Europe (Koprowski 1994a). The
Fox Squirrel’s (Sciurus niger) range overlaps with much of
the Eastern Gray Squirrel’s range, but extends further west in
the United States and Canada (Koprowski 1994b). The
Eastern Gray Squirrel is distinguishable from the Fox
Squirrel by its silver/white hair on the ventral side (belly)
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compared to the Fox Squirrel’s reddish-orange ventral hair.
Nuts are the main food source for both species, including
acorns, pecans, and walnuts (Koprowski 1994a, 1994b). The
Eastern Gray and Fox squirrels are a common component of
urban and rural areas. Viruses and bacteria associated with
these species include West Nile Virus (Kiupel et al. 2003) and
Leptospira (Dirsmith et al. 2013) in fox squirrels and Sal-
monella from eastern gray squirrels (Jijon et al. 2007). De-
spite co-occurring with humans and agricultural animals at
relatively high densities, little to no research investigates the
role of tree squirrels in harboring foodborne pathogens or
zoonotic diseases.

Invasive Species
House mouse

The ancestral range for the House Mouse (M. musculus)
was most likely India; however, this species readily colo-
nized worldwide as an invasive species due to their close
proximity to humans (Boursot et al. 1993, Phifer-Rixey and
Nachman 2015). Wild M. musculus are distinguishable from
white-footed mice and deer mice by their shorter pelage,
smaller eyes, and scaly tail (Schmidly and Bradley 2016).
House mice are commonly found in urban and agricultural ar-
eas, although feral populations do exist in the wild (Phifer-
Rixey and Nachman 2015). Wild M. musculus is heavily
studied, and this species has been shown to be a vector for many
human diseases and is frequently implicated as reservoir for
foodborne pathogens (including multiple pathogenic Salmo-
nella serovars, E. coli, Clostridium difficile, and so on) and other
zoonotic pathogens (e.g., avian influenza) of special interest to
agricultural production systems (Table 1) (Shimi et al. 1979,
Henzler and Opitz 1992, Allen et al. 2011, Burt et al. 2012).

Norway rat

The Norway Rat (Rattus norvegicus), also known as the
Brown Rat, is native to China and Mongolia but now has a
worldwide distribution as its range expanded alongside hu-
mans, facilitated in large part to global trade (Frittelli 2008,
Puckett et al. 2016). Like house mice, Norway rats are a
common component of both rural and urban environments
across the United States, especially on farms. Indeed, the
authors of this review personally witnessed an active infes-
tation of hundreds of R. norvegicus on a single farm in
southern Minnesota in 2019. Norway rats have connections to
several of zoonotic diseases and foodborne pathogens, in-
cluding Hepatitis E virus (Kanai et al. 2012), C. burnetii
(Reusken et al. 2011), Salmonella (Hilton et al. 2002), and
C. difficile (Himsworth et al. 2014), among others (Table 1).
The ability of these two invasive species, the house mouse and
the Norway rat, to adapt to any environment and their quick
reproductive cycles make them especially important to un-
derstand and document as reservoirs of foodborne pathogens.

Black rat

Also known as the Roof Rat or Ship Rat, the Black Rat
(Rattus rattus) is native to Southeast Asia. As in the case of
the Norway Rat, the Black Rat is commensal with humans and
is now cosmopolitan due to human travel. This species is a
major vector for numerous pathogens across the globe, in-
cluding Y. pestis (plague), Bartonella spp. (Ellis et al. 1999),

Trypanosoma cruzi (Panti-May et al. 2017), and several
foodborne pathogens (Table 1). The current distribution of the
Back Rat in the United States is primarily associated with
coastal regions, and data regarding established R. rattus
populations in the central United States are limited (Lack et al.
2013). It is likely that R. rattus first colonized North America
alongside Columbus in 1492 and established populations in
the continental United States by the 1500s (Armitage 1993).
However, R. rattus populations across the United States have
dwindled, possibly a direct result of being extirpated by the
larger and more aggressive R. norvegicus (reviewed in Lack
et al. 2013). Given the paucity of data regarding R. rattus
within the Midwestern United States, and potential for mis-
identification with R. norvegicus, we recommend field-based
studies aimed to better understand the extent to which
R. rattus is distributed on Midwestern farms, especially near
shipping ports and railway hubs (e.g., the Great Lakes region,
Mississippi and Missouri Rivers, and so on).

Major Bacterial Foodborne Pathogens Linked
to Rodents

STEC, nontyphoidal S. enterica, Campylobacter spp.,
Clostridium spp., and L. monocytogenes are classified as
major zoonotic foodborne pathogens in the United States
(Scallan et al. 2011). From a global perspective, these zoo-
noses have well-documented rodent reservoirs, yet there are
clear knowledge gaps regarding the interplay between these
zoonoses and rodents in the United States. Thus, we focus on
the following for our review:

STEC and multidrug resistant generic E. coli

STEC, also known as verocytotoxigenic E. coli (VTEC), is
an important foodborne zoonotic pathogen that causes illness
ranging from mild diarrhea to hemorrhagic colitis and life-
threatening hemolytic uremic syndrome (HUS) (Tarr 1995,
Karmali 2004). Cattle and other ruminants are considered to
be natural reservoirs for STEC; however, STEC strains have
been isolated from other domestic species, as well as wild ani-
mals (e.g., goats, sheep, pigs, cats, dogs, deer, wild rabbits,
birds, and rodents) (Espinosa et al. 2018). For example, in 2011
a large outbreak of E. coli O157:H7 was traced back to fresh
strawberries contaminated with deer feces (Laidler et al. 2013).

With respect to rodent-specific analyses, several studies
have identified STEC strains circulating in peridomestic
species on both agricultural and urban landscapes, including
the Norway Rat (R. norvegicus),vBlack Rat (R. rattus), and
House Mouse (M. musculus) (Cizek et al. 1999, Blanco
Crivelli et al. 2012, Himsworth et al. 2015, Williams et al.
2018). In particular, Nielsen et al. reported the isolation of a
STEC strain from a Norway Rat (R. norvegicus) identical to
a cattle isolate from the corresponding farm with respect to
serotype, virulence profile, and pulsed-field gel electro-
phoresis type (Nielsen et al. 2004). Moreover, in a Czech
cattle farm, E. coli O157 was isolated from 40% of Norway
rats, emphasizing the importance of rodents as potential
vectors of pathogenic E. coli in cattle productions (Cizek
et al. 1999).

In pathogen survival studies, it was shown that E. coli
0157 could survive for up to 9 months in the feces of ex-
perimentally infected rodents, whereas in ruminant feces the
pathogen survived for up to 18 weeks (Fukushima et al. 1999,
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Guenther et al. 2013). This finding suggests that rodent mo-
bility and longer survival periods of the pathogen in rodent
feces may make rodents competent vectors of such pathogens
particularly when they have access to livestock production
farms. In addition, limited or no data exist with respect to
STEC screening of populations of native rodent species oc-
curring on farms across the Midwestern states (e.g., Per-
omyscus spp., Microtus spp., Sciurus spp.; see above); thus,
additional research is required to investigate the role of these
rodents in spreading or harboring strains of STEC.

Nonspecific E. coli strains with antibiotic resistance or
multidrug resistance (MDR) are also of great health concern,
as MDR infections are complicated to treat and, in worst case
scenarios, are completely without antibiotic treatment op-
tions. Moreover, MDR bacteria can greatly contribute to the
dissemination of antibiotic resistance genes through hori-
zontal gene transfer to other bacteria.

MDR bacteria have been found at high prevalence in the
intestinal bacteria of wild rodents living in close proximity to
livestock. For example, one study reported 71% MDR E. coli
positive samples (cecum) from 49 wild house mice (M.
musculus) captured from swine farms (Allen et al. 2013).
Furthermore, Allen et al. (2011) studied antimicrobial resis-
tance in generic E. coli from wild small mammals (e.g.,
mouse, vole, shrew) living in swine farms, residential areas,
landfills, and natural environments in Ontario, Canada. They
observed the highest (48%) resistant E. coli population iso-
lated from the small mammals living in swine farms com-
pared to other areas (Allen et al. 2011). A study by Guenther
et al. (2010) reported low (5.5%) prevalence of antibiotic
resistance among 188 E. coli isolated from rodents captured
from rural areas in Germany, which also suggests transmis-
sion of resistant bacteria from livestock or farm environment
to wild rodents. With respect to species-specific behavioral
traits, it was suggested by Himsworth et al. (2015) that Black
Rats (R. rattus) are less likely to carry E. coli than Norway
Rats (R. norvegicus) as the latter species is a ground dweller
and thus experiences more fecal exposure than the upper
level dweller. Moreover, Kozak et al. (2009) found that ro-
dents residing in swine farms were five times more likely to
carry tetracycline and multidrug resistant E. coli than rodents
living in natural areas. Interestingly, 83% of the swine pop-
ulation in the specified farms also carried tetracycline resis-
tant E. coli. However, the direction of transmission of these
resistant pathogens remains unclear.

Nontyphoidal S. enterica

Salmonellosis is a common foodborne illness worldwide,
caused by the bacteria Salmonella that has over 2500 sero-
types making this pathogen very challenging to control. In the
United States, nontyphoidal Salmonella bacteria cause 11%
of all foodborne illness, 35% of all foodborne illness related
hospitalization, and 28% of all foodborne illness related death
(Scallan et al. 2011). In addition, 95% of all nontyphoidal
Salmonella cases are foodborne, suggesting an origin from
food animals or contaminated food products derived from food
animals and fresh produce (Hoelzer et al. 2011).

Many studies have isolated Salmonella at higher rates from
farm environments, indicating that the overall farm envi-
ronment is an important Salmonella reservoir (Bondo et al.
2016). Both wildlife and companion animals represent po-
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tential sources of human salmonellosis, as Salmonella can
cause disease in these animals and some animals can be
asymptomatic carriers as well (Rodriguez et al. 2006). Ro-
dents are effective amplifiers of Salmonella (see above,
Fig. 1) with the capacity to output millions of Salmonella
bacteria into a particular environment. Such rodent-
associated Salmonella output is within the reported infective
doses for poultry and livestock (e.g., pigs and cattle), which
range from 10° to 10® CFUSs (Barrow et al. 1987, Gast and
Holt 1998, Silva et al. 2008, Hill et al. 2016).

Poultry will preferentially feed on rodent fecal pellets if
present in feed or housing facilities, which is highly sug-
gestive of commensal rodents being a critical risk factor in
production operations (Davies and Wray 1995). Umali et al.
(2012) showed an important connection between persis-
tent Salmonella infection in layer chicken houses and ro-
dents, where R. rattus intermittently shed Salmonella up to
24 weeks, thus reintroducing the pathogen to replacement
flocks after cleaning and disinfection. Camba et al. (2020)
report that continual fecal shedding by R. rattus inhabiting
commercial layer farms in Japan likely played an important
role in shifting the predominant Salmonella serotypes iden-
tified on layer farms. Over a sampling period from 2008 to
2017, the authors describe an initial identification of Salmo-
nella Infantis in farm-collected R. rattus; however, over time
the rat-associated serotypes changed to Salmonella Corvallis
in 2013 followed by Salmonella Potsdam and Salmonella
Mbandaka in 2017, which became the predominant on-farm
serotypes (Camba et al. 2020). Thus, rodents associated with
poultry farms are a serious public health concern (Antunes
et al. 2016, Nidaullah et al. 2017, Camba et al. 2020).

Several other studies reported the isolation of highly
similar strains of Salmonella from food animals (chickens,
pigs) and rodents (R. rattus and an undefined species) cir-
culating in the same farm environment (Lapuz et al. 2012,
Andrés-Barranco et al. 2014). Moreover, Andrés-Barranco
et al. (2014) suggested a greater role of rodents compared to
wild birds in maintaining S. enferica in a farm environment,
where the associated livestock population was a major source
of Salmonella contamination.

There are a growing number of examples documenting the
relationship between rodents and Salmonella outbreaks. Al-
though not occurring in a wild or agricultural setting, a 2004
multistate outbreak of S. enterica serovar Typhimurium was
traced to hamsters, rats, and mice sold in pet shops across the
United States (Hoelzer et al. 2011). Studies investigating the
contamination of chicken and pork sausage by Salmonella
have implicated poor rodent-control measures within proces-
sing facilities (Trimoulinard et al. 2017). It is likely that rodent-
related Salmonella outbreaks occur seasonally, coinciding with
key demographic and/or climatic shifts that influence rodent
behavior (e.g., reproductive cycles, seeking of indoor shelter
with lower autumn nightly temperatures, seeking novel food
sources during periods of drought, and so on). Given the strong
connection between rodents and Salmonella, we recommend
renewed and proactive monitoring of rodents associated with
food animal farms and food production facilities.

Campylobacter spp.

Campylobacter are major pathogens that cause significant
episodes of foodborne illness and hospitalization across the
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global human population (Scallan et al. 2011). Campylo-
bacter jejuni and Campylobacter coli are the species most
commonly associated with human campylobacteriosis; other
less frequently reported species causing infection include
Campylobacter fetus, Campylobacter lari, and Campylo-
bacter upsaliensis (Meerburg and Kijlstra 2007). Campylo-
bacteriosis typically causes symptoms of gastroenteritis,
including vomiting, diarrhea, and fever (Franco 1988). The
majority of Campylobacter infections are self-limiting;
however, in the case of immunocompromised individuals,
hospitalization and treatment are required. Thus, antibiotic
resistant strains of Campylobacter pose a great threat to
public health. Poultry, contaminated retail meat, and dairy
products have largely been associated with campylobacter-
iosis cases (Scallan et al. 2011).

Poultry and other food animals are thought to be the pri-
mary reservoir of Campylobacter spp.; however, wildlife
surrounding farm environments are a potential source (Wil-
son et al. 2008). Viswanathan et al. (2017) studied the
prevalence of Campylobacter in livestock (i.e., beef cattle,
dairy cattle, and swine) and wildlife, including rodents (i.e.,
meadow voles (M. pennsylvanicus), house mice (M. muscu-
lus), species of Peromyscus, and Norway rats (R. norvegi-
cus)), and identified Campylobacter across their samples
(Table 1). Importantly, the presence of rodents in poultry
farms has been identified as a significant risk factor for
Campylobacter colonization in turkeys and broilers (Agunos
et al. 2014). Hiett et al. (2002) conducted molecular sub-
typing analyses of Campylobacter spp. from Arkansas and
California poultry operations. They isolated identical strains
of Campylobacter from broiler feces and from a mouse
(undefined species) captured from the same farm. Similarly,
other studies have reported greater prevalence of antimicro-
bial resistant strains of Campylobacter from wildlife living in
or surrounding farms (Agunos et al. 2014).

Several studies have investigated the role of rodents as
potential reservoirs of Campylobacter spp., showing an as-
sociation between the presence of rodents on farms and an
increased risk for flocks to become infected with Campylo-
bacter (Berndtson et al. 1996, Adhikari et al. 2004, Meerburg
and Kijlstra 2007). These studies collectively indicate that
rodents are a risk factor for the transmission of Campylo-
bacter on food animal operations, and additional studies are
required to better understand these transmission dynamics.

Clostridium spp.

The Centers for Disease Control and Prevention (CDC)
estimates that ~ 1 million cases of foodborne illnesses each
year are linked to Clostridium species (Grass et al. 2013). The
most common species causing these foodborne illnesses in-
clude C. perfringens, C. difficile, and C. botulinum. Clostridia
are anaerobic, spore-forming bacteria and produce entero-
toxin that can cause mild diarrhea to fatal colitis and death of
humans (Keessen et al. 2011, Silva et al. 2014). Over 90% of
Clostridium outbreaks are associated with meat products
(e.g., beef, pork, and poultry) (Grass et al. 2013). However,
very limited information is known about animal or environ-
mental reservoirs for Clostridium spp., information that could
be crucial for implementing biological control measures at
animal production farms and processing facilities (McClane
2007).

Companion and food animals have been considered as
potential sources of Clostridium infection (Rodriguez et al.
2017); however, only a few studies have investigated the
presence of Clostridium species in peridomestic rodents
despite having clear connections (Hensgens et al. 2012,
Himsworth et al. 2013). Himsworth et al. (2014) reported an
overall prevalence of 13.1% of C. difficile across 724 rodents
(R. rattus, R. norvegicus) collected in Vancouver, Canada.
Another study in the Netherlands stated high prevalence
(66%) of C. difficile in house mice (M. musculus) from a
swine farm, indicating the potential role of these rodents in
the maintenance and transmission of the pathogen (Burt et al.
2012). Many studies have established rodents as reservoirs
for C. difficile (Burt et al. 2012, 2018, Himsworth et al. 2014).
In addition, Krijger et al. (2019) reported six ribotypes of C.
difficile associated with human infections that were isolated
from rodents captured from swine and dairy farms in the
Netherlands. A study by Andrés-Lasheraset al. (2017) in
Spain observed that the odds of finding C. difficile from en-
vironmental rodent (Rattus sp., M. musculus) fecal pellets
were 10 times higher than from swine fecal samples, sug-
gesting that rodents can transmit the pathogen on farms.
Another study reported the isolation of identical clonal
types of C. difficile from rodents (R. rattus, M. musculus) and
piglets from two swine farms in Brazil, suggesting that ro-
dents were introducing the pathogen to the piglets (de Oli-
veira et al. 2018). Overall, these studies suggest that on-farm
rodents are potential C. difficile reservoirs.

Listeria monocytogenes

Another important foodborne pathogen is L. mono-
cytogenes, which causes significant hospitalization and is a
leading cause of death by foodborne illness (Scallan et al.
2011). Listeriosis is less commonly reported, perhaps due to
its long incubation period and/or because the bacteria are not
detected by routine stool culture (Smith et al. 2018). How-
ever, listeriosis can cause severe conditions, including still-
births, abortions, septicemia, and meningitis in high risk
groups such as pregnant women, elderly, young children,
and immune compromised individuals (Montero et al. 2015).

L. monocytogenes can be found naturally in the environ-
ment (e.g., soil, water) and, consequently, in fresh produce,
livestock, and wild animals (Weis and Seeliger 1975, Lyau-
tey et al. 2007). Fecal carriage of L. monocytogenes is com-
mon and widely documented in food animals (cattle, goat,
sheep, swine) and wildlife (mammals, birds) (Weber et al.
1995, Yoshida et al. 2000, Kalorey et al. 2006). The specific
reservoir status of farm-associated rodents for Listeria spp. is
poorly understood; nevertheless, a few studies have reported
varying levels of Listeria presence in rodents. For example,
Ayyal et al. (2019) reported 5% prevalence of Listeria spp.
among 120 black rats within an urban setting in Baghdad,
Iraq. Lesley et al. (2016) conducted a study in Kubah Na-
tional Park (Sarawak, Malaysia) to detect the prevalence and
antibiotic resistance of L. monocytogenes from wild animals
(bats, rats, and shrews) and water samples. They reported
33% prevalence of L. monocytogenes from the samples col-
lected and found the isolates to be uniformly resistant to
tetracycline and erythromycin.

Another species, Listeria ivanovii, also causes listeriosis,
and Cao et al. (2019) described 3.7% prevalence of the
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bacteria in wild rodents collected from six regions of China,
suggesting that wild rodents might be a long-term host of the
pathogen. Inoue et al. (1992) captured 254 wild rats, in-
cluding 41 R. rattus and 126 R. norvegicus in buildings from
six different areas in Kanto, Japan, and they observed high
prevalence of Listeria (up to 77.8%). These same authors also
reported frequent isolation of L. monocytogenes from R.
rattus inhabiting Tokyo restaurants (Inoue et al. 1991). Tri-
moulinard et al. (2017) investigated contamination of
chicken and pork sausage by L. monocytogenes, and their
findings suggested a positive association with fresh rodent
droppings. Additional studies are required to describe the
epidemiology of Listeria spp. from commensal rodents in-
habiting farms and to assess the public health risk.

Conclusions

At present, many epidemiological studies of zoonotic
foodborne pathogen outbreaks in humans focus almost en-
tirely on the role and risk factors of food animals in trans-
mission dynamics. There remains limited published research
on the role that individual species of peridomestic rodents
play in the transmission of these pathogens to humans, food
animals, and within food production systems of the United
States. Despite the connections between rodents and zoonotic
foodborne pathogens highlighted above, there is a lack of
research on this subject across the diverse agricultural land-
scape of the United States. In light of this paucity of data,
we recommend novel research that focuses on the rodent-
agriculture interface and that leverages modern metagenomic
approaches. For example, high-throughput metagenomic ana-
lyses are ideally suited for investigating the rodent-agriculture
interface, and such approaches could elucidate the origins of
zoonotic foodborne pathogens (Koskela et al. 2017, Sekse et al.
2017, Andersen and Hoorfar 2018, Carleton et al. 2019).
Moreover, mammalogists must be engaged in this research to
appropriately identify those rodent species that are associated
with food production pipelines in the United States. This is
important for several reasons, especially when considering that
species-specific behaviors and natural history traits (as described
above) can influence pest control measures (e.g., avoidance of
poison baits), facilitating large on-farm populations.

When considering native rodent species, the local habitat
and ecology surrounding farms are important for under-
standing seasonal population densities, as local environ-
mental conditions can directly influence behavior and
on-farm population density. Knowing the resident rodent
species composition associated with our food production
facilities would allow for the development of sophisticated
predictive modeling of rodent populations and the imple-
mentation of species-specific biosecurity measures.

There is an undeniable connection between peridomestic
rodents and agriculture that has existed since the dawn of
civilization. This connection is ongoing and should not be ig-
nored when investigating the source and/or spread of zoonotic
foodborne pathogens. Therefore, we recommend the formation
of multidisciplinary One Health research teams consisting of
farmers, veterinarians, epidemiologists, microbiologists, and
mammalogists to focus on this area of research. It is likely that
such efforts will identify novel reservoirs for emerging zoonotic
foodborne pathogens and will ultimately help to secure food
production systems across the United States.
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